Pandas: 让你像写SQL一样做数据分析
1.引言
假设现在有一份简化版的设备统计数据:
维度编号 | 操作系统 | 设备型号 | UV | PV |
---|---|---|---|---|
0 | android | NLL | 387546520 | 2099457911 |
0 | ios | NLL | 52877990 | 916421755 |
1 | android | 魅族 | 8995958 | 120369597 |
1 | android | 酷派 | 9915906 | 200818172 |
1 | android | 三星 | 16500493 | 718969514 |
1 | android | 小米 | 23933856 | 290787590 |
1 | android | 华为 | 26706736 | 641907761 |
1 | ios | 苹果 | 52877990 | 916421755 |
2 | android | 小米-小米4 | 2786675 | 55376581 |
2 | android | 魅族-m2-note | 4642112 | 130984205 |
2 | android | OPPO-A31 | 4893428 | 62976997 |
2 | ios | iPhone-6s | 5728609 | 99948716 |
其中,第一列表示维度组合编号,第二列表示操作系统类型,第三列为维度值(NLL表示缺失,即第一行、第二行表示操作系统的统计,其余表示厂商或机型),第三列、第四列分别表示UV、PV;且字段之间为\t分隔。读取该文件为DataFrame:
import pandas as pd
df = pd.read_csv(path, names=['id', 'os', 'dim', 'uv', 'pv'], sep='\t')
2.实战
ADD
在原DataFrame上,增加一行数据;可通过DataFrame的append函数来追加:
import numpy as np
row_df = pd.DataFrame(np.array([['2', 'ios', '苹果-iPad 4', 3287509, 32891811]]), columns=['id', 'os', 'dim', 'uv', 'pv'])
df = df.append(row_df, ignore_index=True)
增加一列数据,则比较简单:
df['time'] = '2017-07-29'
To Dict
关于android、ios的PV、UV的dict:
def where(df, col_name, id_value):
df = df[df[col_name] == id_value]
return df
def to_dict(df):
"""
{"pv" or "uv" -> {"os": os_value}}
:return: dict
"""
df = where(df, 'id', 0)
df_dict = df.set_index('os')[['uv', 'pv']].to_dict()
return df_dict
Top
group某列后的top值,比如,android、ios的UV top 2的厂商:
def group_top(df, group_col, sort_col, top_n):
"""
get top(`sort_col`) after group by `group_col`
:param df: dataframe
:param group_col: string, column name
:param sort_col: string, column name
:param top_n: int
:return: dataframe
"""
return df.assign(rn=df.sort_values([sort_col], ascending=False)
.groupby(group_col)
.cumcount() + 1) \
.query('rn < ' + str(top_n + 1)) \
.sort_values([group_col, 'rn'])
全局top值加上group某列后的top值,并有去重:
def top(df, group_col, sort_col, top_n):
"""overall top and group top"""
all_top_df = df.nlargest(top_n, columns=sort_col)
grouped_top_df = group_top(df, group_col, sort_col, top_n)
grouped_top_df = grouped_top_df.ix[:, 0:-1]
result_df = pd.concat([all_top_df, grouped_top_df]).drop_duplicates()
return result_df
排序编号
对某列排序后并编号,相当于给出排序名次。比如,对UV的排序编号:
df['rank'] = df['uv'].rank(method='first', ascending=False).apply(lambda x: int(x))
Left Join
Pandas的left join对NULL的列没有指定默认值,下面给出简单的实现:
def left_join(left, right, on, right_col, default_value):
df = pd.merge(left, right, how='left', on=on)
df[right_col] = df[right_col].map(lambda x: default_value if pd.isnull(x) else x)
return df
自定义
对某一列做较为复杂的自定义操作,比如,厂商的UV占比:
def percentage(part, whole):
return round(100*float(part)/float(whole), 2)
os_dict = to_dict(df)
all_uv = sum(os_dict['uv'].values())
df = where(df, 'id', 1)
df['per'] = df.apply(lambda r: percentage(r['uv'], all_uv), axis=1)
重复值
某列的重复值的行:
duplicate = df.duplicated(subset=columns, keep=False)
写MySQL
Pandas的to_sql函数支持Dataframe直接写MySQL数据库。在公司开发时,常常会有办公网与研发网是不通的,Python的sshtunnel模块提供ssh通道,便于入库debug。
import MySQLdb
from sshtunnel import SSHTunnelForwarder
with SSHTunnelForwarder(('porxy host', port),
ssh_password='os passwd',
ssh_username='os user name',
remote_bind_address=('mysql host', 3306)) as server:
conn = MySQLdb.connect(host="127.0.0.1", user="mysql user name", passwd="mysql passwd",
db="db name", port=server.local_bind_port, charset='utf8')
df.to_sql(name='tb name', con=conn, flavor='mysql', if_exists='append', index=False)
转载自:http://www.cnblogs.com/en-heng/